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Received 3 May 1978, in final form 3 January 1979 

Abstract. The methodology of earlier papers by Butler and Wybourne is used to obtain 
algebraic formulae for 6 j  symbols of the double dihedral and cyclic groups and the 3jm 
factors for all possible imbeddings: D, 2Dn and D, 2Cn.  The usual 3jm symbols of 
angular momentum theory, that is for SOs 3 S 0 2 ,  do not have a phase choice which allows 
their factorisation into SO3 3 D, and D, 2 SO2 3jm factors. We derive the change of phase 
necessary for factorisation, thus obtaining a relation between SO3 DD, factors and the 
SOJISO~ 3jm symbols of standard angular momentum theory. The use of maximal 
imbeddings has removed the multiplicity problems encountered by other methods. 

1. Introduction 

The properties of j symbols and jm factors were reviewed and extended recently (Butler 
1975). Emphasis was placed on the phase choices, symmetries and factorisation 
properties of these coefficients for groups which are not simply reducible. The review 
was followed by a paper on the methodology of computation of the coefficients using 
character theory alone (Butler and Wybourne 1976a, hereafter referred to as I). These 
methods were used for SO3 and for the embedding SO3 3SOz (Butler, hereafter 
referred to as 11). They were also used to calculate the 6 j  symbols for the tetrahedral 
group and some 3jm factors for the chain SO3 3 T 3 C3 (Butler and Wybourne 1976b, 
hereafter referred to as 111). The reader is referred to I for notation and definitions. 

In this paper formulae for the 6 j  symbols of arbitrary finite and infinite dihedral 
double groups are obtained. We also show how to calculate 3jm factors for the 
branchings so3 3 Dm, Dm 3 D,, D m  ZJ Cm = Sop ,  D,, 3 D,, D, 3 C,, Dodd 3 Cz, C,, ZJ 

The 6 j  symbols and 3jm factors of various groups are essential for the application of 
the Wigner-Eckart theorem to various physical problems. Racah (1949) showed that it 
is possible to factor coupling coefficients for group chains. To obtain greatest benefit 
from Racah’s factorisation lemma, one should ensure that all possible intermediate 
groups have been included, so that at each step one has a maximal subgroup. 
Intermediate subgroups have sometimes been overlooked. For instance, the existence 
of the intermediate group Dm in the chain SOS 3 Dm 3 D, solves the so-called multi- 
plicity problem (Bickerstaff and Wybourne 1976, Patera and Winternitz 1973) 
encountered in attempting to go straight from SO3 to D,. The factorisation introduced 
in the 3jm symbols of angular momentum, by noting the existence of Dm in SO3 3 Dm 3 

SOZ, gives a ready formula for the SO3 3 Dm 3jm factors used in the above problem. 
Thus our results are more general than other calculations (see, for example, Golding 
and Newmarch 1977, Harnung and Schaffer 1972, Kibler and Grenet 1977). A 
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minor modification of the SO3 2 SO2 phase choices is required before the symbols 
factorise. 

A book is being prepared which tabulates j symbols for all point groups and jm 
factors for all point group branchings (Butler 1979). A computer program exists to 
perform these tabulations, enabling the results of this paper to be checked easily. 

2. The structure of the dihedral groups 

The finite dihedral group D, consistsof the identity; (n - 1) rotations about the z axis by 
multiples of 27~/n,  exp(iJZ2m.rr/n), or (2: in Hammermesh's (1962) notation; and n 
twofold rotations about axes perpendicular to the z axis, C2(q5) or C2. The infinite 
dihedral group has an infinite number of elements of the latter types. We label the 
groups D,, D,, D,,,, and Dodd for the infinite, finite, even and odd dihedral groups 
respectively. 

The double dihedral groups include, in addition to the single-valued elements, a 
basic spin operator R,  and all elements of the form AR where A is a member of the 
single group. We follow Hamermesh's (1962 § 9.7) definitions of double-valued 
rotations and their inverses which lead to the classes shown in the tables. Other authors, 
for example Koster et a1 (1963), use different definitions but this only affects the 
labelling of the classes. 

The representation structure of the dihedral groups is also given in the tables. By 
including the spin irreps of the dihedral groups (equivalently, all the true irreps of the 
double dihedral groups) the irrep structures of De,,,, Dodd and D, are seen to be very 
similar. The reductions of products of irreps are easily deduced from the character 
tables by elementary character theory. 

We have chosen to label irreps by a system analogous to the usual SO3 and SO2 
labels, i.e. integers and half-integers. In D, there are two one-dimensional irreps, the 
identity which we label O+, and another, 0-. 

If a and b are any two-dimensional irreps of D, (i.e. a,  b 2;) then 

0- xo- = 0' 

o - x a = a  

a x b = ( a  + 6) + / a  - bj for a # b 

a x u  =0 '+0-+(2a) .  

(2.1) 

(2.2) 

(2.3) 

(2.4) 

In the last product 2a and 0' are in the symmetric part of the product if a is integer 
and 2a  and 0- are in the symmetric part if a is half-integer. 

In D, the rules are the same, except for the following changes. When a + b = in we 
have two one-dimensional irreps +in and -in, and if a + b  >in the irrep ( a  + b )  
becomes [n - (a  + b)]. In addition, there are the special cases 

0' for n even 
for n odd (*in) X (*in)  = 

for n even 
for n odd. (*in) X ( F i n )  = 

(2.5) 

In (2.5) 0' is the symmetric part and there is n o  antisymmetric part. 
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Table 1. Character table for D, with n odd. Where the n elements C&), 
6 = k x / n ,  0 s k < n form a single class and where e = 2 x k / n ,  0 < k < f n  
giving (n - 1) classes containing two elements each. 

Irrep: 
0' 1 1 1 1 1 1 
0- 1 1 -1 -1 1 1 
I 2 -2  0 0 2 COS f e  -2 COS f e 
1 2 2 0 0 2 COS e 2 COS e 
I 2 -2  0 0 2 ~ 0 ~ 3 e  -2  cost e 

1 

3 

+ ( n - 1 )  2 2 0 0 2cosf(n- l )e  -2 cos f ( n  - i)e 
+in 1 -1 i -i ( - I k  (_)k+' 

- f n  1 -1 -i i (-Ik (-)k+' 

Table 2. Character table for D. with n even. Where the n elements C2(4), C2(4)R, 
4 = ( 2 k  + l)x/n, 0 s  k < n form one class; the n elements C2($), C,($)R, $ = 2 k x / n ,  
0 s  k < n form another; and where 9 = 12x /n ,  O< I < f n  gives ( n  - 2 )  classes of two 
elements each. 

Class E R CA$) CA+) exp(iJ,e) exp(iJze)R exp(iJ,x) 

Number of 
elements in 1 1 n n 2 2 2 

Cz($)R Cz(4)R exp(-iJ,e)R exp(-iJ,e) exp(iJ,x)R 

Irrep: 
O+ 1 1 1 1 1 1 1 
0- 1 1 -1 -1 1 1 1 

1 2 2 0 0 2 COS e 2 COS e 2 cos x 

- 1 
2 2 -2  0 0 2 cos fe -2 COS 46 2 cos fx 

3 2 -2  0 0 2 cos 3 - 2  cos 3 2 cos $57 

Table 3. Character table for D,. Where all C2(4) and C2(4)R, 0 s 4 < x, form one class; 
and 0 <I$ < x gives a continuum of classes with 2 elements each. 

Class E R CA41 exp(iJ,e) exp(iJ,B)R exp(iJ,a) 

Number of 
elementsin 1 1 CO 2 2 2 

Cd4)R exp(-iJA exp(-iJ,e)R exp(iJ,n)R 

Irrep: 
O+ 1 1 1 1 1 1 
0- 1 1 -1 1 1 1 

1 2 2 0 2 COS e 2 COS e 2 cos x 
4 2 -2 0 2 cos f e  -2  COS re 2 cos fx 

3 2 -2 0 2 cos f e  -2  COS Se 2 cos $7 
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Some 3 j  symbols {AlA2A3} are fixed by the symmetric products while others may be 
chosen arbitrarily (Butler 1975, § 6). In D, and De,,, the choice ( -)'(A1)''(A2"''A3) where 
j ( A i )  is the power (I, 0 4) of irrep A,  (and is equal to the modulus of the label except for 
j ( O - )  = 1) is useful because then there is no sign change under odd permutations of 
columns in a 6 j  symbol (see equation (16) of I). Note that D, and De,,, are simply 
reducible but Dodd is not. Wigner (1940) showed that such a choice may be used in 
simply reducible groups. 

For Ddd 31's of the form {a, a, b} with a # 0' # b must be positive, but we use the 
above choice in all but this case because in practice only a few 6j  symbols of Dodd do 
change sign with this choice, and they are imaginary. 

Thus we have the 3 j  symbols 

D,, D , , : {uu~-}=( - )~""  

{aao'} = ( - )2a  

a + b + c  {abc} = ( - ) 
unless a = b or b = c, when the sign is ( + 1, and 

D,, n even: {*in *$no+} = +1 

{*in ~ $ 0 - 1  = -1 

Dn,n odd:{*$n*$nO-)=+l 

{ . t in  r$nO'} = -1. 

(2.7) 

(2.8) 

3. 6j  symbols of D, 

Our derivations follow the methods of I, I1 and 111. Any 6j containing the identity irrep 
(0') may be evaluated by using equation (17) of I. 

The primitive 6j's (those containing $; I § 4) are restricted by equations (14)-(19) of 
I. There are, however, choices of phase to be made, one for each non-primitive triad. 
We choose the phase of the coupling (a, b + $, a + b +$) relative to (6 ,  a + $, a + b + $), 
and to the primitive couplings ($, a, a +$) and (4, b, b +$), by choosing 

a b + f  a + b + $  2a+2b+1 

( b  a + $  2 
13.1) 

when a 3 b # 0' This choice has the advantage that the same formula applies for b 2 a. 
It follows that for a, b # 0' 

If we consider 6j's containing no O*'s arranged so that the largest entry is in the top left 
corner and the next largest movable entry is on its immediate right, the possible forms 
are restricted by the appropriate Kronecker products (triads) (see I, equations (14)- 
(16), 111, equation (3)) to 

U '1 and { a + b  a + b  a a :}. {,"'P a + b - c  c 
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Equation (18) of I easily shows that the first form has modulus of $ and a little calculation 
shows that the second form is zero. (This was used in the calculation of the primitives 
above.) The general 6 j  can be determined directly by using equation (20) of I to show 
that 

b a + b  a (z:: a + b - c  a c } = + (  a - ( c - - f )  a + b - ( c - z )  1 c - q  

a 
a--Z a + b - $  

Za+Zb =f(-) . (3.3) 

6j  symbols containing 0- must be treated as special cases, relating them via equation 
(19) of I. We choose 

(3.4) 

for a > b b i. The same phase can be shown to apply for a d b and we can also obtain 

= 1. 
0’ 0- 0-1 - - [ O +  0- 0-} 

{o+ 0- 0- 0- 0’ 0’ (3.7) 

4. 6j symbols of D, 

Most of the irreps, triads and 6j  symbols of D, are simply a subset of those of D,, so our 
D, calculations are valid for most of the 6j’s of D,. The additional triads are of the form 

(4.1) 
(*in a z n - a )  1 

( a + b  qn-a i n - b ) .  (4.2) 

and 
1 

The phase choices associated with the first set of triads may be fixed by the choice 

a b  
for a b b > a .  (4.3) 

In order to fix the phase choice associated with the second ‘special’ triad (4.2) one must 
be careful to choose a form of 6j which does not vanish and does not contain the triad 
twice. Choosing the phases of all 

a + b  & - a  
( i n - a - 5  1 a + b + $  a,;b) 2 f o r $ n > a + b b i n - b  (4.4) 

fixes the rest of the phase relationships. If a + b + $ < i n  the 6j  is real and may be chosen 
consistent with the ‘general pattern’ below. If a + b + $ = i n  and n is odd the 6j  is 
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imaginary. For n even it is real, but changes sign for * i n .  The remaining 6j's are 
calculated using equations (19) and (20) of I. 

We summarize the values for the non-trivial 6j  symbols for the dihedral groups. 
There is a general pattern for 6j  symbols of dihedral groups which do not contain 

one-dimensional irreps or triads of the form of (4.2). Except for some vanishing 6j 
symbols, 

b c  
{," b c l = '  

for D, and D, (4.5) 

14.6) 

the modulus is f and their phase depends on the triads containing the largest element. 
The largest element belongs to two triads and the 6j  has a phase equal to the 3j symbol 
for each triad. Occasionally, for n odd, the two 3j symbols have different phases. In this 
case the 6j  is positive. This only happens when either triad contains two equal irreps, 
e.g. 

Most of the non-trivial 6 j  symbols containing one-dimensional irreps are tabulated 
below. Those containing a triad of the form ( a  + b i n  - a  i n  - b )  are easy to calculate 
but difficult to summarise. 

For D, or D, : 

For D,: 

(note: use f. as n is odd/even) 

(4.8) 

(4.9) 

(4.10) 

14.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(note: use i. as n is odd/even). 
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The number of special cases makes it difficult to construct tables by hand using the 
above results. Butler (1979) will include tabulations of 6j  symbols for D, and for D,, 
with n d 6. 

5. The branchings D, 3 D, and D,, 3 0, 

The branching rules for D, =) D, are 

0' + 0' 

0- + 0- 

f+; 

(in -5) + ( f n  -5) 
f n - , ( + f n ) + ( - f n )  

( f n  + f) + ( f n  - $1 

( n  -f)+i 
n+O'+O- 

( n  +i)+$ 

. . .  

. . .  
( 5 . 1 )  

. . .  
All 2jm factors for D, 2 D, can be chosen to be positive because orthogonal irreps 

contain orthogonal irreps and the symplectic irreps contain symplectic or quasisym- 
plectic irreps (see equation (3 1 )  of I). It is advantageous to choose some 2jm's negative 
when the subgroup is Ddd so that all primitive 3jm's may be chosen real. Choose all 
2jm's (A),,* negative for A in one of the ranges f ( 4 k  + l ) n  C A  C f ( 4 k  + 3)n, k integer, 
and positive otherwise. The norms of the primitive 3jm factors can be found from 
equations (35) and (36) of I. Most primitives involve a free phase choice for there is one 
for each ket IAa). All primitive 3jm factors not involving *in  may be chosen positive if 
the columns are appropriately ordered. If a and a f f are two-dimensional irreps of D, 
then 

( A + /  a fz ; t) - 2 = 1. 

There are the special cases involving 0': 

A + $  A f) - - ( A + f  A 
f 0- 

The orthogonality relations ((35) and (36) of I) and the complex conjugation sym- 
metries ( (38)  of I)) restrict the primitive 3jm factors involving rt fn:  
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If n is odd, - in  = (+in)* and there is only one choice for the four cases of (5.4), while 
for n even there are independent choices for +in and -in. We may choose 

1 
for n odd (5 .5)  

and 

1 
for n even. 

Zn - 2  

Complex conjugation gives 

(5.6 

(5.7 

and 

since 

(A)+i,-$,,= ($I%= 1. 

The remaining 3jm factors are calculated using equation (40) of I. With these choices 
only 3jm's with both n odd and containing triads of the form (a + b  i n  - b )  
are imaginary. 

The branching rules for D,, 2 D, are the same as those for D, 2 D, except for the 
special cases 

1 i n  -a  

* f m n  + 0' m even 

m odd. 1 + f T n  
(5.10) 

The 2jm factors are chosen in the same way as the D, 2 D, ones. It follows that the 
primitive 3jm factors for D,, 2 D, are the same as D, 2 D, except for m even when 

and for m odd when 

(5.11) 

The general 3jm factors are again calculated using equation (40) of I. 
With the above choices, a D, - D, - 3jm involving f f n  is not always equal to a 

product of D, - D,, and D,, - D, - 3jm's. Such chains may be chosen to factorise by 
making different choices in equations (5.5) and (5.6) but alternative factorisations (i.e. 
alternative intermediate groups) will not give the same results in general. For example, 



j symbols and jm factors 1663 

it is not difficult (but rather tedious) to show that no choice of phases exists such that the 
3jm's for Dm 3 D18 3 D6 3 D3, D, 3 Dlg 3 Dg 3 D3, and Dm 3 D12 3 D6 3 DJ simul- 
taneously factorise. 

6. The chains D, 5) C, and D, I> C, 

The jm factors in these chains are easily deduced in the same manner as the jm factors of 
the previous section. Note that, since SOz(=C,) and C, are Abelian, their irreps are 
one-dimensional. This means that all non-vanishing 3j and 6j  symbols are +1 as are all 
3jm factors in all possible imbeddings (see 111). 

For the cyclic subgroups of the dihedral groups the relevant branching rules are: 

Dm 3 Cm(=SO2): 

a + ( + a ) + ( - a )  

o++o 
0-+o 

a + ( + a )  + ( - a )  

o++o 
0-+o 
+I +1 

211 2n 
-3n + f n  I 

o++o 
0-+o 

2 + ( + f) + ( - f) 

2 + ( + f) + ( - f) 

1 

1 + 0 + 1  

( + f n )  -* ( + f) 
( - f n  ) + ( - f). 

(a)b-b = ( - ) a - 6  

For D, 3 C, the 2jm factors can be chosen: 

(o-)oo = -1 

(6.2) 

(6.4) 
(note that b = * a ) .  

gives 
An appropriate choice for the primitive 3jm factors for D, 3 C, and a recoupling 

26 

( a + b  -a -b 
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a a  1 

a -a 0 
(6.6) 

This D, 13 C, phase choice is chosen because D, is simply reducible (Wigner 1940), 
and use of this choice means all 3jm factors of D, 2 Cm and all 6j symbols of D, are 
real. The reader will note that the choice of 3j symbols in (2.7) and the choice of 2jm 
factors in (6.4) leads to the following symmetry of the 3jm factor. Under either 
interchange of columns, or conjugating the irreps (changing the sign of the bottom line), 
the new 3jm factor is related to the old 3jm by + or - as the sum of the elements of the 
top line is even or odd (counting 0- as 1). This is Wigner's (1940) result. 

These formulae do not work for D, 2 C,, because Dodd is not simply reducible, but 
with appropriate choices the 3jm factors for Deven=Ceven are all real. (Tables are 
available and will be published: Butler 1979). 

7. 3jm factors for SO3 3 D, 

The branching SO3 3 SO2 has been studied extensively; see I1 for references and 
Rotenburg et a1 (1959) for tables. Unfortunately, although the group D, belongs in the 
chain so3 2 D, 2 S02, the free phases in the Racah-Wigner algebra for SO3 2 SOz 
have not been chosen to allow factorisation. (We call the standard choice the JM basis 
choice.) The conflict can be seen from the symmetries of the following 3jm symbol of 
SO3 2 SO2 and the corresponding 3jm factors for SO3 2 D, and D, 2 SO2 steps. 

We have 

I - M  where the standard choices of 2jm ( J ) M - M  = ( - 1 give the standard result 

In the SO3 2 D, =) SO2 basis we have the factorisations 

2 1 1 s 0 3  2 1  1 s o  
(-1 0 1 ) S 0 2 = ( 1  0.- l)D:(-: i-. :):;* 
(2 1 

1 )S03=(2  1 l )S03( l  0- 1)D, 
1 0 -1 SO2 1 0- 1 D, 1 0 -1 SO2 

17.1) 

(7.2) 

(7.3) 

(7.4) 

The 3jm factors for S031D,  are identical in (7.3) and (7.4). The 3jm factors for 
Dm3SOz are related by the interchange of columns 1 and 3. The phase (3j symbol) 
which arises is fixed by the occurrence of 0- in the product of 1(D,) with itself; this is 
negative (Butler 1975,s 6). This shows that the SO3 3 D, 2 SO2 basis is different from 
the standard JM basis. 

The discrepancy in the two bases can be traced to the number of free phases in the 
Racah-Wigner algebra. In the example, the JM basis regards the kets 121) and 12 - 1) as 
unrelated, the relation being fixed by phase choices during the calculation (such as by 
the phases of the ladder operators J ,  = T (J, * iJy)). The SO3 3 D, 3 SO2 basis does 
not have this freedom, for the relation between 121 1) and 121 - 1) is forced to be the 
same as the relation between 11 11) and 11 1 - 1). 
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The SO3 3 Dm 3jm factors follow from the usual arguments. It is possible to choose 
all 2jm factors positive and the primitive 3jm factors as 

( J + t  J !)-( - 
a f T  a F (2J+1)(25+2) (7.5) 

(7.6) 

(7.7) 

where 0' occurs as J +$ (or J) is even or odd. 

coefficients between the JM and SO3 =) D, 2 SO;? bases (Butler 1975, 0 11). 
The primitive 3jm factors are all that are necessary to calculate the transformation 

A recursive calculation shows that if 

(7.8) 

(7.9) 

(Ja - a I J - a )  = 1 (7.10) 

where a > 0, and for J even or odd, 

(JO'OlJO) = 1. (7.11) 

Now that we have the transformation from the usual JM basis to the more 
symmetric SO3 3 D, 3 SOz basis we may factorise the SO3 3 SO;? chain at the D, level 
and obtain the SO3 3 D m  3jm factors as 

JZ J3 so3 - 21/2(- )J,-a+b (7.12) 
(a?b a b ) -  D m  

(7.13) 

8. Conclusion 

We have shown that all j and jm factors, for all dihedral and cyclic groups and for all 
possible imbeddings involving them, can be calculated using character theory alone. 

A second important aspect of our work has been the use made of the factorisation of 
jm symbols for chains of groups. Direct use was made of this in § 7, where we derived a 
simple expression for the SO3-Dm-3jm factors in terms of the S03-SO2-3jm 
symbol of angular momentum. The use of D m  to make SO3 =) D, more nearly maximal 
removes the multiplicity problems encountered by other authors. 
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